skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Ye, Shuonan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Despite the critical role of sintering phenomena in constraining the long-term durability of nano-sized particles, a clear understanding of nanoparticle sintering has remained elusive due to the challenges in atomically tracking the neck initiation and discerning different mechanisms. Through the integration of in-situ transmission electron microscopy and atomistic modeling, this study uncovers the atomic dynamics governing the neck initiation of Pt-Fe nanoparticles via a surface self-diffusion process, allowing for coalescence without significant particle movement. Real-time imaging reveals that thermally activated surface morphology changes in individual nanoparticles induce significant surface self-diffusion. The kinetic entrapment of self-diffusing atoms in the gaps between closely spaced nanoparticles leads to the nucleation and growth of atomic layers for neck formation. This surface self-diffusion-driven sintering process is activated at a relatively lower temperature compared to the classic Ostwald ripening and particle migration and coalescence processes. The fundamental insights have practical implications for manipulating the morphology, size distribution, and stability of nanostructures by leveraging surface self-diffusion processes. 
    more » « less
    Free, publicly-accessible full text available November 1, 2025
  2. The microscopic mechanisms underpinning the spontaneous surface passivation of metals from ubiquitous water have remained largely elusive. Here, using in situ environmental electron microscopy to atomically monitor the reaction dynamics between aluminum surfaces and water vapor, we provide direct experimental evidence that the surface passivation results in a bilayer oxide film consisting of a crystalline-like Al(OH)3top layer and an inner layer of amorphous Al2O3. The Al(OH)3layer maintains a constant thickness of ~5.0 Ã…, while the inner Al2O3layer grows at the Al2O3/Al interface to a limiting thickness. On the basis of experimental data and atomistic modeling, we show the tunability of the dissociation pathways of H2O molecules with the Al, Al2O3, and Al(OH)3surface terminations. The fundamental insights may have practical significance for the design of materials and reactions for two seemingly disparate but fundamentally related disciplines of surface passivation and catalytic H2production from water. 
    more » « less